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Abstract
Let b be a positive integer greater than 1, N a positive integer relatively prime to b, |b|,, the
order of b in the multiplicative group Uy of positive integers less than N and relatively primes

to N, and x € Un. It is well known that when we write the fraction % in base b, it is periodic.

Let d, k be positive integers with d > 2 and such that |b|y = dk and § = 0.a1az - ap[, with

the bar indicating the period and a; are digits in base b. We separate the period aiaz - - - ap|

in d blocks of length k and let A; = [a(j—1)k+1a(j—1)k+2 - - - @jk]p De the number represented in
d

base b by the j — th block and Sq(z) = > A;. If for all x € Un, the sum Sq(x) is a multiple of
5=1

b® — 1 we say that N has Midy’s property for b and d.
In this work we present some interesting properties of the set of positive integers d such that N
has Midy’s property to for b and d.

Keywords: Period, decimal representation, order of an integer, multiplicative group of units
modulo N
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1 Introduction

Let b be a positive integer greater than 1, b will denote the base of numeration,
N a positive integer relatively prime to b, i.e (IV,b) =1, |b|,y the order of b in the
multiplicative group Uy of positive integers less than N and relatively primes to
N, and z € Uy. It is well known that when we write the fraction % in base b,
it is periodic. By period we mean the smallest repeating sequence of digits in
base b in such expansion, it is easy to see that |b|, is the length of the period
of the fractions & (see Exercise 2.5.9 in [6]). Let d, k be positive integers with
d > 2 and such that [b|y = dk and § = 0.a1az~~~ap[, with the bar indicating
the period and a; are digits in base b. We separate the period ajas - - - ajp| in d

blocks of length k and let

Aj = [aG-1)ke10G-1)k+2 " @ikl

d
be the number represented in base b by the j — th block and Sg(x) = > A;. If
j=1

for all x € Uy, the sum Sy(z) is a multiple of b¥ — 1 we say that N has Midy’s
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property for b and d. It is named after E. Midy (1836), to read historical aspects
about this property see [2] and its references.

If Dy(N) is the number in base b represented by the period of %, this is
Dy(N) = laraz - - - ap, Jp, it is easy to see that NDy(N) = bltlv — 1. We denote
with My(INV) the set of positive integers d such that N has Midy’s property for b
and d and we will call it Midy’s set of N to base b. As usual, let v,(N) be the
greatest exponent of p in the prime factorization of N.

For example 13 has Midy’s property to the base 10 and d = 3, because
13|10 = 6, 1/13 = 0.076923 and 07 + 69 + 23 = 99. Also, 49 has Midy’s property
to the base 10 and d = 14, since |49|19 = 42,

1/49 = 0.020408163265306122448979591836734693877551

and 0204+-408+4163+4265+306+12244484+-979+4591+-836+73446934-877+551 =
7% 999. But 49 does not have Midy’s property to 10 and 7. Actually, we can see
that M10(13) = {2,3,6} and M10(49) = {2, 3,6, 14, 21, 42}.

In [1] are given the following characterizations of Midy’s property.

Theorem 1. Let N,b and d as above, d € My(N) if and only if Dp(N) = 0
(mod b* — 1). Furthermore, if d € My(N) and Dy(N) = (b* — 1)t, for some
integer t, then blYIN — 1 = (b¥ — 1)Nt.

Theorem 2. Let N,b and d as above, d € My(N) if and only if for all prime
p diwvisor of N it satisfies that if |b|, | k, then v,(N) < vp(d). Furthermore, if
d € My(N), then Z?Zl(bik mod N) = my(d, N)N.
Theorem 3. Let N,b and d as above, d € My(N) if and only if for all prime p
divisor of (b* — 1, N) it satisfies that v,(N) < vp(d).

2 Structure of M;(N)
Theorem 2 tells us that the subgroup generated by b* in Uy, <bk> =

{bjk 27 =0,1,..., d— 1}; is the key of a method to obtain the value of the
multiplier my(d, N), because if d € My(N), then
d .
Nmy(d, N) = Zizl(bzk mod N).

The following result shows an interesting relationship between <bk2> and <bk1>
when kg | kl.

Theorem 4. If |b| = kidi = kada and dy = cdy for some integer c € Z; then

) =U (= ()

r=

where brk2 <bk1> = {b’"kQ:L’ ‘X € <bk1>}.
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Proof. Since dy = cdy the dy values of j € {0, 1, ..., do — 1} can be divided
by ¢ obtaining a quotient between 0 and d; — 1 and a remainder between 0 and
c — 1, in consequence this values are the numbers ci 4+ r with 0 < < d; — 1 and
0<r<c—1. Thus

")

bjk2:j:0,1,...,d2—1}

pRa(citn) y = 0,1,..., dy — 1, r=0,1,---,c—1}

I
= =

pREETR i = 0,1, di =1, 1 =0, 1,..., 0—1}

—_

U ()

r=0

9}

We get the following result as a consequence of the above fact.

Corollary 1. Let di, dy be divisors of |b|y and assume that dy | do2 and di €
My(N), then do € My(N).

The following result is a dual version of this corollary.

Proposition 1. Let Ny, N2 and d be integers such that d is a common divisor
of |bly, and |bly,, if d € My(Na) and Ny | Na then d € My(N1).

Proof. In fact, as Ny | Na, if [b|y, = kod then [b[y, = kid with ky | ko. Thus
(bk1 -1, Nl) | (ka -1, Ng) and the result follows from Theorem 2 and from
the fact that d € Mp(NV2). O

Theorem 5. If 2 € My(N) and d divides |b|y with d even, then d € My(N)
and mp(d, N) = 4.

b d
Proof. In Theorem 4, letting dy = 2, k1 = %, ds = d and therefore ¢ = 5 and

(bF1) = {1, N — 1} we obtain that (b*2) is formed by c translations of {1, N — 1}
d

and so the sum of its elements is ¢V, thus we have my(d, N) =c = > O

The hypothesis 2 € M (V) is essential, as is shown in the following example
due to Lewittes, see [2].

Example 1. Let N = 7 x 19 x 9901, so [10|5 = 36 and, in addition, N does
not have Midy’s property for the base 10 and for any d = 2, 3, 6; but it has this
property when d =4, 9, 12, 18 and 36 and mjo(12, N) =T1.

Next theorem has a big influence in our work.
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Theorem 6 (Theorem 3.6 in [6]). Let p be an odd prime not dividing b, m =
Vp(b|b|p — 1) and let t be a positive integer, then

11, if t <m,
bl =
pr bl if t>m.

For the base b = 10 the greatest m known is 2, which is achieved with the
primes 3, 487 and 56598313, see [4]. From the same paper we take the following
example: if b = 68 and p = 113, then [b], = |b,2 = [b],5. Something similar
occurs for b = 42 and p = 23. For m = 3, these are the only cases with p < 232
and 2 < b <9].

Next theorem allows us to build M;(p™) from My (p).

Theorem 7. Let b, p, n be integers where p is a prime not dividing b, and n
positive. Let m = Vp(b|b|1’ —1), then

My(p) if n <m,

My(p") = - .

(") U p" ™" My(p) if n>m.
i=0

Therefore;

M (p)] if n<m,

Mo(p™)] = {(n—m—l—l) IMo(p)| if n > m.

Proof. Let |b|, = kd and d € M,(p) then (b* — 1, p) = 1. Suppose that n < m,
as (b — 1, p?) = 1 and bl,n = [bl, = kd follows that d € M,(p") and thus
My(p) C My(p™). Tt is also easy to prove that My(p™) C My(p).

We now consider the case when n > m. Let d € M,(p) and |b], = kd,
and let i be an integer with 0 < ¢ < n —m, by Theorem 6 we have [b|,, =
ptm \b]p = kp'(p"~™"'d). We affirm that (bkpi — 1, p") = 1 because b =
(bF)P" = b* mod p# 1 mod p. As (W' —1, p") =1 and |b],n = kpt(p"—™d)
it follows from Theorem 3 that p"~ ™ "'d € My(p™). In this way we have proved
that p" """ My(p) C My(p"). ,

Similarly, we can show that My(p™) C p" ™ My(p). The second part of the
theorem is a direct consequence from the first part. O

Theorem 3 says that if p is prime and d > 1 is a divisor of [b|,,, then d € M(p)
and therefore |[My(p)| = 7(0p(b)) — 1, where 7(n) denote the number of positive
divisors of n.

Theorem 8. Let N, M be integers such that |b|,,; 5y = |b|y, then

1. Mp(MN) C Mp(N).
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2. If N and M are relatively primes, then

Mb(MN):{ de My(N):|b|y =kd and }

V (r primo) (r | (bF — 1, M) = v, (M) < v, (d))

3. In particular, if p is a prime not dividing NN, |b|p is a divisor of |b|,;, and
s = vp(|b] ), then

My(p*TIN) = {d € My(N) : |b|y = kd and (b’“ _1, p) - 1} .

Proof. To prove the first part we show that if d ¢ M (), then d ¢ My(MN).
In fact, as |b|y = |bly;ny = kd and d ¢ My(N) from Theorem 3, there exists
a prime g, divisor of (V¥ — 1, N) such that vy (N) > v4(d). As (bk —1, N) is
a divisor of (b* —1, MN) and vy (MN) > vy (N) Theorem 3 guarantees that
d¢ My(MN).

We now add the hypothesis (M, N) = 1 and let |b|, = |b;ny = kd with
d € My(N). Consider a prime r divisor of (b* —1, MN). Since M and N are
relatively primes then either r | (bk — 1,M) or r | (b’lC — 1,N), but not both.
If r | (0F—1,N), as d € My(N) from Theorem 3 follows that v, (N) < v, (d)
and as M and N are relatively primes we have v, (N) = v, (M N) and therefore
d € My(MN). If r | (b¥ —1,M), as 7 N, we have v, (MN) = v, (M) and from
the assumption and Theorem 3 we get that d € My(MN). The third part now
is clear, because b ,s+1 is a divisor of |b[y and p and N are relatively primes. [

Theorem 9. Let N, p be integers with (N,b) = 1 with p a prime divisor of b— 1.
Then there exists a positive integer s such that for all integer t, with t > s, we
have My(p'!N) = @.

Proof. Without loss of generality we can suppose that p is not a divisorof N. Let
s = vp(|bly), as [b], = 1 we are in the conditions of the third part of Theorem 8

and the result is immediately because (bk — 1, p) = p for any k. ]

The result of previous theorem is true for any divisor n, not necessarily a
prime, of b — 1. Also note that the value of the integer s — v,(N) is the smallest
that satisfies the theorem because My(p*~*»(N)N) is non empty by the second
part of Theorem 8.

We now study the following question. Given N and b with M,(N) # &, is
it possible to find a positive integer z such that My(zN) = {|b|x} ? The next
result, from [5], will be useful in the sequel.

Lemma 1 (Corollary 2 in [5]). Let b > 2 and n > 2. Then there exists a prime
p with n = |b|, in all except the following pairs: (n,b) = (2,27 — 1) with v > 2 or
(6,2).

To answer the question we will need the following result.
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Lemma 2. Let N and b be integers such that My(N) # @. Let q a prime divisor
of |b|n. Then there exists a positive integer z that satisfies the following properties

1. |bl.n = |b|N,
2. Mp(zN) # @,
3. If d e My(2N), then vy(d) = v4(|bN).

Proof. We will study two cases

1.) Assume that either ¢ # 2 or b+ 1 is not a power of 2. From Lemma 1
there exists an odd prime p such that |b|p = ¢. In the sequel, we denote with
c=1p,(N), s =1,(bly) and m = v, (b9 —1). If p is not a divisor of N, from
the third part of Theorem 8, we have when d € My(2N), then |b|y = kd and
(b* —1,p) = 1. Hence if d € My(2N), then v,(d) = v,(|b|x). Thus, in this case,
we take z = p*T1. Since (b —1,2N) = (b — 1,N) and |b|xy € My(N) we have
bln € Mp(2N).

From now we suppose that p is a divisor of N. Thus ¢ > 0 and N = p°M
with M non divisible by p. We consider the following cases:

1. ¢ > s+ 1. Let d € My(N) where |b| = kd, if p divides b* — 1, then from
Theorem 3 it follows that ¢ = v, (N) < v, (d) < s, which is a contradiction.
In consequence, we get that d € M;(N), implies that |b|y = kd and v,(d) =
v4(|b]n) and we take z = 1.

2. ¢ < s+1. We consider two subcases, depending if either ¢ is or not a divisor
of [b],,-

Firstly, we assume that ¢ | |b|,,. Since |b|y = [|b|pc , |b|M] and [b] 541, =

[|b|ps+1 , |b|M] from Theorem 6, |b|y = [qp5, |b|M} and |b|ps+1M = [qp°, |b] \/];
where § = max(0,c —m) and € = max(0,s —m + 1).

We claim that [b] .11y, = [b]y = [b[as. In fact, since |b|y = [ap®, bl a],
s = vp(|b|n) and 6 < s, we obtain that v,(|b|as) = s and hence |b|y = |b|as.
Also as € < s, we get that [b],s+1)7 = ||

By the third part of Theorem 8 we have d € My(p*t1 M), implies that
ve(d) = vyu(|bln). So we take z = pSctl Again, as
(b—1,zN)=(b—1,N) and |b|y € Mp(N), then |b|xy € Mp(2N).

Assume that ¢ 1 |b|,,. Similar as in the above paragraph we can show that
|b|ps+1M = |b|N = q|b|M We affirm that

./\/lb(ps+1M) = {d/q -d e ./\/lb(M)}

Let d € My(M) since |[byer1py = k(d'q) and (BF — 1, M) =
(bF —1,p*1 M), from Theorem 3, we get that d'q € My (p*1M). Therefore,
{d'q:d € My(M)} C Mb(ps+1M).
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Let d € My(p*ttM). Since |b|,s+13 = qlblar we have d is either a divisor
of |blps or d = q or d = d'q where d > 1 is a divisor of |blp. If d is
a divisor of |b|y; with |b|y; = kd, then as p divides (b*4 — 1,p**' M) and
s+1=uv,(p*™t M) > v,(d) by Theorem 3 we obtain that d & My(p*Tt M),
Now assume that d = ¢q. Since p divides |b|ys there exists a prime r divisor
of (blPlv — 1, pst1 M), with r # g. By Theorem 3 we get a contradiction.

Finally if d = d'q with |b]y; = kd’, it is easy to see that d € My(p*T1 M)
implies that d' € My(M).

Thus, in this case we take z = p*~“t1. We showed that if d € My(zN),
then d = d'q where |b|y = kd, d € My(M) and v,(d) = v4(]b|n). Since
|blar € Myp(M) then |b|y = qlblar € My(2N).

2.) Assume that ¢ = 2 and b = 27 — 1 for some positive integer v > 2. We
know, from Lemma 1, that we can not find a prime p such that [b[, = 2. So
we follow a different procedure in this case. It is clear that |b|, = |b]o = 1. Let
s = 1o(|b|y) and ¢ = (). Note that ¢ can not be strictly greater than s,
because 2 divides (b¥ — 1, N) and My(N) # @. We study the following cases:

1. ¢ = s. By the assumption ¢ > 0. Suppose that there exists a d € My(N)
such that k& 1is even. Thus 1o(d) <  s. As 2 divides
(b* — 1, N) from Theorem 3 we have ¢ = v5(N) < v5(d) which is a contra-
diction. Therefore, it is enough to take z = 1.

2. 5 > c. In this case we take z = 257¢. Since |b|os divides 2571, then |b|,y =
[|b]2s, |blam] = |blar = |bln. Hence, My(2N) = {d € Mp(N) : by =
kd and vo(d) = vo(|b|n)}-

Indeed, from Theorem 3 we have d € M(IV) is an element of M;(zN) if
and only if s = 15(2N) < 15(d) and this is equivalent to say that v5(d) = s.
Since |b|ny € My(N) and s = v5(|b|x), we have |b|y € My(zN).

O

Theorem 10. Let N and b be integers such that |My(N)| > 1. Then, there
exists a positive integer z such that My(zN) = {|b|n}.

Proof. Let |bly =¢i' ... q;l be the prime factorization of |b|y.

Applying Lemma 2 to q; and N we can find a positive integer z; such that
bz, N| = [b|n, Mp(21N) # @ and when d € My(21N), then vy, (d) = v (|b]n).
Again using Lemma 2 with ¢ = ¢2 and z1IN, we get a positive integer zo such
that |b|;, 2,8 = |b|n, Mp(z122N) # &, and d € My(z122N ), implies that vy, (d) =
Vg, (|b|v). From Theorem 8 we know that My(z122N) C Mp(z1N). In this way
for each d € My(2122N) we also have that vy, (d) = v, (]b|N).

Repeating this process we get positive integers zi,...,2; such that if z =
Hézl z;, the following properties hold
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L. |b|.n = |b|N,

2. My(2N) # @,

3. If d € My(2N), then vy, (d) = vy, (|b|n) for all i € {1,...,1}.

Since the ¢;’s are the prime factors of |b|x, we conclude that d = |b|y and
therefore My(2N) = {|b|n}. O
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